翻訳と辞書
Words near each other
・ Carmina Burana (album)
・ Carmina Burana (disambiguation)
・ Carmina Burana (Orff)
・ Carmina Gadelica
・ Carmina or Blow Up
・ Carmina Slovenica
・ Carmina Villaroel
・ Carmina Virgili
・ Carminati
・ Carminatia
・ Carminatia alvarezii
・ Carminatia papagayana
・ Carminatia recondita
・ Carminatia tenuiflora
・ Carminative
Carminati–McLenaghan invariants
・ Carmindy
・ Carmine
・ Carmine (color)
・ Carmine (disambiguation)
・ Carmine Abate
・ Carmine Abbagnale
・ Carmine Agnello
・ Carmine Alfieri
・ Carmine Appice
・ Carmine Appice (album)
・ Carmine bee-eater
・ Carmine Benincasa
・ Carmine Biagio Gatti
・ Carmine Boal


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Carminati–McLenaghan invariants : ウィキペディア英語版
Carminati–McLenaghan invariants
In general relativity, the Carminati–McLenaghan invariants or CM scalars are a set of 16 scalar curvature invariants for the Riemann tensor. This set is usually supplemented with at least two additional invariants.
==Mathematical definition==

The CM invariants consist of 6 real scalars plus 5 complex scalars, making a total of 16 invariants. They are defined in terms of the Weyl tensor C_ and its right (or left) dual ^ \,
#M_1 = \frac \, S^ \, S^ \, \left( C_ + i \, ^\star C}_ \right)
#M_2 = \frac \, S^ \, S_ \, \left( C_ \, C^ - ^\star C}_ \, ^\star C}^ \right) + \frac \, i \, S^ \, S_ \, ^\star C}_ \, C^
#M_5 = \frac \, S^ \, S^ \, \left( C^ + i \, ^\star C}^ \right) \, \left( C_ \, C_ + ^\star C}_ \, ^\star C}_ \right)
The CM scalars have the following degrees:
#R is linear,
#R_1, \, W_1 are quadratic,
#R_2, \, W_2, \, M_1 are cubic,
#R_3, \, M_2, \, M_3 are quartic,
#M_4, \, M_5 are quintic.
They can all be expressed directly in terms of the Ricci spinors and Weyl spinors, using Newman–Penrose formalism; see the link below.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Carminati–McLenaghan invariants」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.